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Abstract—Text classification poses some specific challenges
such as high dimensionality with each document (data point)
having only a very small subset of them and representing
multiple labels at the same time. In this paper, we propose
SISC (Semi-supervised Impurity based Subspace Clustering),
a κ-nearest neighbor approach, based on semi-supervised
subspace clustering that considers all these factors during text
classification.SISC finds clusters in the subspaces of the high
dimensional text data. This novel semi-supervised subspace
clustering algorithm is based on fuzzy cluster membership. This
fuzzy clustering exploits chi square statistic of the dimensions
and impurity measure within the cluster. Empirical evaluation
on real world multi-class and multi-label data set reveals that
our approach outperforms state-of-the-art text classification as
well as subspace clustering algorithms.

I. I NTRODUCTION

Text classification is different from conventional classifi-
cation approaches in two important aspects. The first one is
in the construction of text documents. The dimensionality
for text data is very large in comparison to other forms of
data sets. Also each document may contain only a few of
the features from the entire pool of feature set. The effect
of this characteristic is that, distance measures based on
TFIDF and euclidean distance usually do not perform well
in the classification process [8]. The second difference from
conventional classification is the presence of multiple labels
associated with each document. This is due to the fact that a
single document may cover multiple classes simultaneously.
One approach may be to consider all class combinations
and then run individual classification for each of them.
But, considering all such combinations of classes present
in such a multi-label dataset will make the classification
infeasible [11], [13].

The notion of subspace clustering matches that of text
data, i.e. having large dimensionality and possibility of each
class to correspond to only a subset of features from the
entire feature set. Subspace clustering allows us to find clus-
ters in a weighted hyperspace [6] and can aid us in finding
documents that form clusters in only a subset of dimensions.
Each dimension of a subspace cluster contributes differently
in forming those clusters. So, applying subspace clustering
can, to a large degree, divide the documents into clusters that
correspond to individual or a particular set of labels. If we
use these clustering information in our text classification, we

can provide a far better result than conventional classifiers
that are designed for good performance for binary or multi-
class data sets.

In practice, very limited amount of labeled data may
be available for training the classifiers. If the method is
unsupervised, it does not take into account this labeling
information which may prove valuable in enhancing the
result. On the other hand, if the method is totally supervised,
then the unlabeled data is considered useless. Only in semi-
supervised approaches, both labeled and unlabeled data
contribute in training.

But there are very few text classification approaches
that are semi-supervised [10]. There are text classification
approaches that consider its high dimensionality, some con-
sider its multi-labelity and some try to train using a semi-
supervised approach. But considering all of them together
is rare. And solving all of these problems simultaneously,
not just one of them, is the goal of this paper. Because, a
system that does not consider one of these aspects will fail
to provide the user with satisfactory results in practice. For
example,K Means Entropybased method [8] uses subspace
clustering method that is based on entropy of the dimensions.
If the data is multi-label, then their entropy calculation no
longer holds ground. Similarly, methods that are supervised
depend heavily on the amount of labeled data and smaller
amount of labeled data may hinder the generation of high
quality classifiers.

In this paper, we propose a new subspace clustering
technique that is in the later stage used inκ-nearest neighbor
approach for classification of multi-label text data. The nov-
elty in this subspace clustering approach is the application
of Impurity component in measuring the cluster dispersions
as well as the chi square statistic value for the dimensions.
Using these two measures in our subspace clustering make
it into a supervised approach as opposed to the legacy
clustering approaches which are unsupervised. In order to
use the unlabeled data in our training process, we performed
a simple modification to our subspace clustering approach
to make it a semi-supervised method.

After performing the subspace clustering, we move to
our κ-NN approach where the neighbors of a test point
(i.e. document) are the subspace cluster centroids trained
on the training set. Based on these neighbors, the test point



is assigned a set of labels. These predicted labels of the
test point are also ranked according to their probability
of being present in the neighbors. We have applied other
subspace clustering approaches for classification and our
method provides significantly better results compared to
them.

The contribution of this paper is three fold. First, we pro-
vide a semi-supervised subspace clustering algorithm called
SISC (Semi-supervised Impurity based Subspace Clustering)
that performs well in practice even when a very limited
amount of labeled training data is available. Second, our
subspace clustering algorithm successfully finds clustersin
the subspace of dimensions even when the data is multi-
label. To the best of our knowledge, this is the first attempt to
classify multi-labeled documents using subspace clustering.
Third, at the same time, this algorithm minimizes the effect
of high dimensionality on the training. Finally, we compare
SISCwith other approaches to show the effectiveness of our
algorithm over a number of data sets including data sets that
are multi-labeled.

The organization of the paper is as follows: Section II
discusses related works. Section III presents the theoretical
background of our basic subspace clustering approach in
supervised form. Section IV discusses the semi-supervised
formulation of SISC. Section V, then provides the modifi-
cation of our subspace clustering approach to handle multi
labeled data. Section VI discusses the data sets, experimental
setup and evaluation of our approach. Finally, Section VII
concludes with directions to future work.

II. RELATED WORK

Classifying text data has been an active area of research
for a long time. Some of these research focus on some
specific properties of text data. One such property is its
multi-labelity. Multi-label classification studies the problem
in which a data instance can have multiple labels. Ap-
proaches that have been proposed to address multi-label
text classification, including margin-based methods, struc-
tural SVMs [14], parametric mixture models [16],κ-nearest
neighbors (κ-NN) [19], and ensemble pruned methods [11].
One of the most recent works includeRAndom k-labELsets
(RAKEL) [15]. In a nutshell, it constructs an ensemble of
LP classifiers and each LP is trained using a different small
random subset of the multi-label set. Then, ensemble com-
bination is achieved by thresholding the average zero-one
decisions of each model per considered label.MetaLabeler
is another approach which tries to predict the number of
labels using SVM as the underlying classifier. Most of these
methods utilize the relationship between multiple labels for
collective inference. One characteristic of these models is
they are mostly supervised [11], [13], [15].

Semi-supervised methods for classification is also present
in the literature. This approach stems from the possibilityof
having both labeled and unlabeled data in the data set and

in an effort to use both of them in training. In [3], Bilenko
et al. propose a semi-supervised clustering algorithm de-
rived fromK-Means, MPCK-MEANS, that incorporates both
metric learning and the use of pairwise constraints in a
principled manner. There have also been attempts to find a
low-dimensional subspace shared among multiple labels [8].
In [18], Yu et al. introduce a supervisedLatent Semantic
Indexing (LSI)method calledMulti-label informed Latent
Semantic Indexing (MLSI). MLSI maps the input features
into a new feature space that retains the information of
original inputs and meanwhile captures the dependency of
output dimensions. Our method is different from this algo-
rithm as our approach tries to find clusters in the subspace.
Due to the high dimensionality of feature space in text
documents, considering a subset of weighted features for
a class is more meaningful than combining the features
to map them to lower dimensions [8]. In [4] a method
called LPI is proposed.LPI is different from LSI which
aims to discover the global Euclidean structure whereasLPI
aims to discover the local geometrical structure. ButLPI
only handles multi-class data, not multi-label data. In [12]
must-links and cannot-links, based on the labeled data, are
incorporated in clustering. But, if the data is multi-label,
then the calculation of must-link and cannot-link becomes
infeasible as there are large number of class combinations
and the number of documents in each of these combinations
may be very low. As a result, this framework can not perform
well when using multi-label text data.

There has been some subspace clustering approaches to
minimize the impact of high dimensionality on classification.
Subspace clustering can be divided into hard and soft
subspace clustering. In case of hard subspace clustering,
an exact subset of dimensions are discovered whereas soft
subspace clustering determines the subsets of dimensions
according to the contributions of the dimensions in discov-
ering corresponding clusters. Examples of hard subspace
clustering includeCLIQUE [2], PROCLUS[1], ENCLUS[5]
andMAFIA [7]. A hierarchical subspace clustering approach
with automatic relevant dimension selection, calledHARP,
was presented by Yip et al. [17].HARP is based on the
assumption that two objects are likely to belong to the
same cluster if they are very similar to each other along
many dimensions. But, in multi-label and high dimensional
text environment, the accuracy ofHARP may drop as the
basic assumption becomes less valid. In [9], a subspace
clustering method callednCluster is proposed. But, it has
similar problems when dealing with multi-label data.

Our algorithm uses subspace clusterinng andκ nearest
neighbor approach. In this light, our work is more closely
related with the work of Masud et al. [10]. In [10], a semi-
supervised clustering approach calledSmSClusteris used.
This algorithm is specifically designed to handle evolving
data streams. Although our multi-label text classification
task is different in this perspective, we have used and



Figure 1. SISC Top Level Diagram

extended the cluster impurity measure used inSmSCluster.
Also, SmSClusteris not designed to handle multi-labeled or
high dimensional text data. Another closely related work to
ours is the work of Jing et at. [8] and Frigui et at. [6].
The closeness is due the fuzzy and subspace clustering
framework. But none of these works can perform better than
our algorithm when the data is high dimensional and multi-
labeled text data. The main reason behind this is our use of a
novel subspace clustering algorithm that finds clusters in the
high dimensional space and the fuzzy cluster membership
that allows multiple labels to be effectively associated with
a test document.

III. I MPURITY BASED SUBSPACECLUSTERING

A. Top Level Description

The semi-supervised clustering is based on the
Expectation-Maximization(E-M) algorithm that locally
minimizes an objective function. We use fuzzy clustering,
allowing each data point to belong to multiple clusters.
Since, in case of high dimensional text data, clusters
can form in different subset of dimensions. We consider
the weight of a dimension in a cluster to represent the
probability of contribution of that dimension in forming the
cluster. Then, we extract the summary statistics from the
data points of each cluster. The progress of the algorithm
can be partitioned into the following steps as shown in
Figure 1:1) E-Step: In the E-Step, the dimension weights and
the cluster membership values are updated. The subspace
clustering formulation is fuzzy in nature. So, each point can
be a member of multiple clusters with different weights.
Initially, every point, both labeled and unlabeled, is regarded
as a member of all the clusters with equal weights. All the
dimensions are also given equal weights.2) M-Step: In this step, the centroids of the clusters are
updated and the summary statistics, i.e. the representation of
each class present in the cluster, are updated for use in the
next step. During the summary calculation, the membership

weights are summed up rather than using a threshold value
to decide which point is regarded as a member of the cluster.
We employ this approach so that membership weights can
play useful role in class representation within a cluster.3) κ-NN formulation: In this step, theκ nearest neighbor
clusters are identified for each test point whereκ is a
user defined parameter. The distance is calculated in the
subspace where the cluster resides. Ifκ is greater than 1,
then during the class probability calculation, we multiply
the class representation with the inverse of the distance and
then sum them for each class across all theκ nearest clusters.

B. Subspace Clustering

We propose the following objective function to be used
in our subspace clustering process by including the chi
square statistic in our objective function. This component
has been included in the objective function so that we can
simultaneously minimize the within cluster dispersion and
maximize the between cluster subspace distance to stimulate
more dimensions to play an active role in the clustering
process. Another component calledImpurity [10] has been
introduced to qualify the dispersion measure for each cluster.
This component helps in generating purer clusters in terms
of cluster labels.

The new objective function is written as follows:

F (W, Z, Λ) =
k
∑

l=1


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where

Dlij = (zli − xji)
2

subject to

k
∑

l=1

wlj = 1, 1 ≤ j ≤ n, 1 ≤ l ≤ k,wlj ∈ (0, 1)



m
∑

i=1

λli = 1, 1 ≤ i ≤ m, 1 ≤ l ≤ k, 0 ≤ λli ≤ 1

In this objective function, the parameterf controls the
fuzziness of the membership of each data point,q further
qualifies the weight of each dimension of each clusterλli

and finally,γ controls the strength of the incentive given to
the chi square component and dimension weights.

C. Impurity Measure

In the objective function in Eqn. 1,Impl is defined as

Impl = ADCl ∗ Entl

Here,ADCl indicates theAggregated Dissimilarity Count
of cluster l and Entl denotes the entropy of clusterl.
In order to understandADCl, we first need to define
Dissimilarity count[10], DCl(x, y):

DCl(x, y) = |Ll| − |Ll(c)|

if x is labeled and its labely = c, otherwise its value is
0. ThenADCl becomes

ADCl =
∑

x∈Ll

DCl(x, y)

where Ll indicates the set of labeled points in cluster
l. The Entropy of a clusterl is computed as :Entl =
∑C

c=1(−pl
c ∗ log(pl

c)), wherepl
c is the prior probability of

classc, i.e., pl
c = |Ll(c)|

|Ll|
.

We can show thatADCl is proportional to thegini index
of clusterl, Ginil:

ADCl =

C
∑

c=1

(|Ll(c)|)(|Ll| − |Ll(c)|)

= (|Ll|)
2

C
∑

c=1

(pl
c)(1 − pl

c)

= (|Ll|)
2(1 −

C
∑

c=1

(pl
c)

2)

= (|Ll|)
2 ∗ Ginil

This is the generalized version of calculation ofADCl.
But, we are considering fuzzy membership in our subspace
clustering formulation. So, we have modified ourADCl cal-
culation. Rather than using counts, we use the membership
weight for the calculation. This is reflected in the probability
calculation.

pl
c =

n
∑

j=1

wlj ∗ jc (2)

where, jc is 1 if data point j is a member of classc,
0 otherwise. ThisImpurity Measureis normalized using
the global impurity measure, i.e. the impurity measure of
the whole data set, before using in the subspace clustering
formulation.

D. Chi Square Statistic

We define chi square component similar to conventional
definition for our problem,

χ2
li =

n(ad − bc)2

(a + c)(b + d)(a + b)(c + d)

where

a = number of times feature i occurs in cluster l

b = number of times feature i occurs in all clesters except l

c = number of times cluster l occurs without feature i

d = number of times all clusters except l occur without feature i

n = number of dimensions

Since we are using fuzzy cluster membership, a point can be
member of multiple clusters. Therefore, if we try to calculate
a, b, c, d andn then, we have to use a threshold to determine
which point can be regarded as a member of a cluster. This
not only brings forth another parameter, the membership
values are undermined in the calculation. So, we modify the
calculation of these counts by considering the corresponding
membership values of each point. So, we get,

a =

n
∑

j=1

∑

i∈j

wlj , b = 1 −

n
∑

j=1

∑

i∈j

wlj

c =
n
∑

j=1

∑

i/∈j

wlj , d = 1 −
n
∑

j=1

∑

i/∈j

wlj

n = total number of labeled points

Since, for each individual point, the sum of membership
values for different clusters in1, the value ofn is always
the total number of labeled training points. The chi square
component allows more features to be used during the
clustering process thereby minimizing the effect of high and
sparse dimensionality of the data.

E. Update Equations

Minimization of F in Eqn. 1 with the constraints forms a
class of constrained nonlinear optimization problems. This
optimization problem can be solved using partial optimiza-
tion for Λ, Z and W. In this method, we first fixZ and Λ
and minimize the reducedF with respect toW. Second, we
fix W andΛ and minimize the reducedF with respect toZ.
And finally, we minimizeF with respect toΛ after fixing
W andZ.

1) Dimension Weight Update Equation:Given matrices
W andZ are fixed,F is minimized if

λli =
1

Mlij
∑m

i=1
1

Mlij

(3)

where

Mlij =
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In order to get the above equation, first, we use the
Lagrangian Multiplier technique to obtain the following



unconstrained minimization problem:

minF1({λli}, {δl}) =
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where [δ1, ..., δk] is a vector containing the Lagrange Mul-
tipliers corresponding to the constraints. The optimization
problem in Eqn. 4 can be decomposed intok independent
minimization problems:

minF1l(λli, δl) =
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for l = 1, ..., k. By setting the gradient ofF1l with respect
to λli andδl to zero, we obtain

∂F1l

∂δl
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(6)

= 0 (7)

and

∂F1l

∂λlt

=
n
∑

j=1

w
f
ljqλ

(q−1)
lt Dlij ∗ Impl + γqλ

(q−1)
lt χ2

lt − δl

(8)

= 0 (9)

From Eqn. 9, we obtain

λlt =
δ

1
(q−1)

l
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q
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Substituting Eqn. 10 in Eqn. 7, we have
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It follows that
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Substituting this expression back into Eqn. 10, we get

λli =
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where

Mlij =







n
∑

j=1

w
f
ljDlij ∗ Impl + γχ2

li







1
q−1

2) Cluster Membership Update Equation:Similar to the
dimension update equation, we can derive the update equa-
tions for cluster membership matrix i.e.W, given Z and Λ
are fixed. The update equations are as follows:

wlj =
1

Nlij
∑k

l=1
1

Nlij

(13)

where

Nlij =

{

m
∑

i=1

λ
q
liDlij

}
1

f−1

In order to derive the above equation, similar to the dimen-
sion update formulation, we use theLagrangian Multiplier
technique to obtain an unconstrained minimization problem
and by setting the gradient ofF1l with respect towlj and
δl to zero, we obtain
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∂δl
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From Eqn. 15, we obtain
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From here, we can derive
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where
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3) Cluster Centroid Update Equation:The cluster center
update formulation is similar to the formulation of dimen-
sion and membership update equations. We can derive the
update equations for cluster center matrix i.e.Z, given W
andΛ are fixed. The update equation is as follows:

zli =

∑n
j=1 w

f
ljxij

∑n
j=1 w

f
lj

(17)



IV. SEMI-SUPERVISEDIMPURITY BASED SUBSPACE

CLUSTERING FOR MULTI CLASS DATA

Multiplying the impurity with the dispersion in the ob-
jective function in Eqn. 1 makes the classification fully
supervised. If there is unlabeled data present, then we can
consider them by adding a dispersion component in the
objective function without the impurity factor. The new
objective function, therefore, becomes

F (W,Z,Λ) =
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As a result of this change, the dimension update equation,
i.e. Eqn. 19 also changes. The new dimension weight update
equation is as follows:

λli =
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The other update equations remain same as they are
independent of theImpurity component.

V. SEMI-SUPERVISEDIMPURITY BASED SUBSPACE

CLUSTERING FOR MULTI LABELED DATA

If the data is multi-labeled, the impurity measure in the
previous section is not correct. As the classes may overlap,
the probability calculation becomes incorrect, i.e., the sum
of probabilities may become greater than 1. We, therefore,
modify the impurity calculation in the generalized case (i.e.
not fuzzy) as follows:

The Entropy of a clusterl is computed as :Entl =
∑C

c=1(−pl
c ∗ log(pl

c) − (1 − pl
c) ∗ log(1 − pl

c)), wherepl
c

is the prior probability of classc, i.e., pl
c = |Ll(c)|

|Ll|
.

We modify ADCl and we can show thatADCl is
proportional to the multi labelgini indexof clusterl:
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where,c′ consists of all classes exceptc andGinil is the
gini index for multi-labeled data.

We can then use thisADCl in our calculation ofImpurity.
It is apparent that, all the update equations remain the
same, only the calculation ofImpurity differs. We apply
the previous formulation of fuzzy probability calculation
in Eqn. 2 in this case too, in order to use the multi-label
impurity measure in our model.

VI. EXPERIMENTS AND RESULTS

We have performed extensive experiments to find out the
performance of our method in both multi-class and multi-
label environment. In the next part, we will describe the data
sets used in the experiments and also the base line methods
against which we have compared our results.

A. Data Sets

We have used a number of datasets in our experimenta-
tion. In this paper, due to space constraints, we have reported
only 4 of those data sets. Two of these datasets are multi-
class datasets and the other two are multi-label datasets. In
all cases, we used fifty percent data as training and rest as
test data in our experiments as part of 2-fold cross-validation.
Similar to other text classification approaches, we performed
preprocessing the data and removed stop words from the
data. We used binary features as dimensions, i.e. features
can only have0 or 1 values. The parameterγ is set to
0.5. For convenience, we selected 1000 features based on
information gain and used them in our experiments. In all the
experiments, the same feature set was used. We performed
multiple runs on our data sets with the training set chosen
randomly from the data set. The four data sets used are as
follows:

1) Reuters Data Set: This is part of the Reuters-21578,
Distribution 1.0. We selected 10,000 data points from
the 21,578 data points of this data set and henceforth,
this part of the data set will be referred to as simply
Reuters Data Set. We considered the most frequently
occurring 20 classes in our experiments. Of the 10,000
data points, 6651 are multi-labeled. This data set,
therefore, allows us to determine the performance of
our multi-label formulation.
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Figure 2. (a) ROC Curves For NSF Abstracts Data Set. (b) ROC Curves For 20 Newsgroups Data Set Without Multi-Labels.

Methods NSF 20 Newsgroups
Abstracts w/o multi-label

SISC multi-class 0.944 0.84
K Means 0.869 0.661

κ-NN 0.602 0.666
SCAD2 0.56 0.661

K Means Entropy 0.58 0.68

Table I
AREA UNDER THE ROC CURVE COMPARISONCHART FOR

MULTI -CLASS CLASSIFICATION

2) 20 Newsgroups Data Set: This data set is also multi-
label in nature. We selected 15,000 thousand docu-
ments randomly for our classification experiments. Of
them 2822 are multi-label documents and the rest are
single labeled. We have performed our classification
on the top 20 classes of this data set.3) NSF Abstracts Data Set: This is a multi-class data
set. Each document or abstract is associated with a
single area of research. The classes indicate the area of
research. The total number of documents is 1,34,158.
From them, 10,000 documents are randomly selected
to represent the top 10 classes in the data set. We have
used this reduced set in our experiments.4) 20 Newsgroups Data Set Without Multi-Labels: We
have removed the multi-label documents from the
previously mentioned data set to create this multi-
class data set. The number of labels considered is
the same as the multi-label data set,i.e. 20 classes.
In this case, we selected 12,000 documents randomly
and used them in our experiments.

B. Base Line Approaches

We have 3 parts in our experiments. In the first phase,
we show comparison with basic K means clustering andκ-
nearest neighbor (κ-NN) approach. In the second phase, we
show the comparison between different subspace clustering
approach and our method. Finally, we show the performance
of our proposed approach in comparison with two multi-

label classification approaches. All the comparisons are done
based on ROC curves i.e. the area under the curve. This area
can have a range from0 to 1.

1) Basic κ-NN Approach and K Means Clustering:In
this part, we compare our approach with the basicκ-NN
approach andK Means Clustering. in κ-NN approach, all
the training data points are saved and based on user specified
parameterκ, we find the nearestκ neighboring data points
of a test instance and based on their labels, we decide on the
classification of that test instance. In theK Means Clustering
approach, the data points are divided into different clusters.
In order to useK Means Clusteringfor classification, after
performing the clustering, we find theκ nearest clusters
and based on the distribution of labels in those clusters, we
predict the labels for a test instance. A similar method has
been applied in [10], however, we are not dealing with data
streams in this case. So, we train a single classifier model
and perform the test with that model as opposed to training
multiple models on different data chunks in an ensemble
fashion [10]. We use this approach as baseline because of
the high dimensionality of text data. If only single points
are used for nearest neighbors, the features present in them
may not provide us with correct classification information.
There may also be cases where there are no appropriate
nearest neighbors because few features coincide in both test
and training instance. Also, using this method as baseline
allows us to show the effectiveness of introducing subspace
clustering in our approach.

2) Subspace Clustering Methods:Introducing subspace
clustering is not enough to perform good classification in the
text data. We have to consider the high dimensionality and
label information in our subspace clustering formulation.In
this section, we show how our subspace clustering approach
performs better in text classification than some state of the
art subspace clustering algorithms. We provide comparison
with SCAD2[6] and K Means Entropy[8] based approach
which indicates the significantly better classification perfor-
mance of our approach. The reason for choosingSCAD2
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Figure 3. (a) ROC Curves For Reuters Data Set. (b) ROC Curves For 20 Newsgroups Data Set.

Methods Reuters 20 Newsgroups
SISC multi-Label 0.78 0.82

Pruned Set 0.55 0.58
MetaLabeler 0.564 0.578

K Means 0.539 0.642
κ-NN 0.577 0.698

SCAD2 0.742 0.642
K Means Entropy 0.542 0.638

Table II
AREA UNDER THE ROC CURVE COMPARISONCHART FOR

MULTI -LABEL CLASSIFICATION

is because of its close resemblance to our algorithm, to
show the effect of introducing impurity measure and chi
square component in the subspace clustering formulation and
because, like ours,SCAD2is also fuzzy in nature.

3) Multi-Label Classification:To show the feasibility of
the multi-label variation of our algorithm, we compare it
with two multi-label classification algorithms, thePruned
Set algorithm [8] and MetaLabeler [13]. In both cases,
we usedSVM as the underlying classifier as used in their
algorithm. Only the multi-label data sets mentioned above
were used for this part of the experiments.

In the Pruned Set[11] method, based on a user specified
parameter, all data points with label combinations having
sufficient count are added to an empty training set. This
training set is then augmented with rejected data points
having label combinations that are not sufficiently frequent.
This is done by making multiple copies of the data points,
only this time with subsets of the original label set. So,
some data points may be duplicated during this training set
generation process. This training set is then used to create
an ensemble ofSVM classifiers. We have also varied the
number of retained label subsets to add to the training set
and chose the best result to report.

In case ofMetaLabeler[13], there are two sets of classi-
fiers. One set consists of binary classifiers that correspondto
each of the unique labels present in the data set. The other

set consists of a single multi-class classifier that learns the
number of labels associated with each data point. In [13],
the authors provide three strategies for training this classifier
using SVM. We used the approach that produces the best
results as claimed by the authors, i.e. using the feature set
used in the first set of classifiers but the labels are the
number of labels in the multi-label data points. Based on
the predictions of this classifier, we choose the labels that
have the maximum values in predictions found through the
first set of classifiers mentioned above.

C. Discussion

In Figure 2(a), we compare the semi-supervised multi-
class variation ofSISCformulated in Section IV with base
line approaches for theNSF Abstracts Data Set. As can
be seen from the figure, our method provides significantly
better result than other methods. Since, this data set is not
multi-label, we do not show the performance ofPruned Set
and MetaLabelermethods on this data set. Our algorithm
achieves an AUC (Area Under The Curve) value of0.944
whereas the closest any other method can achieve is0.869.

In Figure 2(b), we perform the same comparison, but for
the 20 Newsgroups Data Set Without Multi-Labels. As can
be seen from the figure, in this case too, our method provides
significantly better result than other methods. Our algorithm
achieves an AUC (Area Under The Curve) value of0.84
whereas the closest any other method can achieve is0.68.

In Table I, we present the summary of our results in terms
of AUC values with a range from0 to 1.

In Figure 3(a) and Figure 3(b), we show the performance
of the multi-label variation of our algorithm. We have added
the Pruned SetandMetaLabelermethod in our comparison
as they are state-of-the-art multi-label algorithms. Also,
these two graphs represent the experimental results on
Reuters and 20 Newsgroups Data Sets respectively, both
of which are multi-label data sets. These two figures are
followed by Table II, which summarizes our multi-label
experiment results. For Reuters data set, our algorithm
achieves AUC value of0.78 and the nearest value is0.742.
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Figure 4. ROC Curves For Different Percentage Of Labeled Data (a) NSF Abstracts Data Set. (b) 20 Newsgroups Data Set Without Multi-Labels (c)
Reuters Data Set (d) 20 Newsgroups Data Set.

DataSets 10% Labeled 25% Labeled 50% Labeled 75% Labeled 100% Labeled
Data Data Data Data Data

NSF Abstracts 0.894 0.891 0.911 0.944 0.944
20 Newsgroups w/o Multi-Label 0.853 0.826 0.847 0.856 0.82

Reuters 0.763 0.737 0.755 0.802 0.78
20 Newsgroups 0.82 0.871 0.835 0.865 0.82

Table III
AREA UNDER THE ROC CURVE COMPARISONCHART FOR DIFFERENTPERCENTAGEOF LABELED DATA

And, for 20 Newsgroups data set, our algorithm achieves
AUC value of0.82 whereas, the nearest value is0.698.

D. Performance On Limited Labeled Data

We have varied the amount of labeled data in our data
sets to find out how this aspect impacts the performance
of our algorithm. As can be seen from Figure 4, even
with significant change in the amount of labeled data, the
performance of our algorithm is quite satisfactory. In caseof
Reuters and 20 Newsgroups Data Set, we use the multi-label
variation ofSISCand for the other two multi-class data sets,
we use the multi-class variation ofSISC. The AUC values
are summarized in Table III.

VII. C ONCLUSIONS

In this paper, we have presentedSISC, a new semi-
supervised text classification algorithm based on fuzzy sub-
space clustering approach. Our proposed subspace cluster-
ing algorithm identifies clusters in the subspace for high
dimensional sparse data and and we then use them for
classification usingκ-NN approach. Also, our formulation
of this fuzzy clustering allows us to handle multi-labeled
text data.SISC, being semi-supervised, uses both labeled and
unlabeled data during clustering process and as can be seen
from empirical evaluation, performs well even when limited
amount of labeled data is available. The experimental results
on real world multi-class and multi-labeled data sets have
shown thatSISCoutperformsκ-NN, K Means Clustering,
K Means Entropybased method,SCAD2and state-of-the-
art multi-label text classification approaches likePruned Set
and MetaLabeler in classifying text data. There are still
scopes for improvement as well as possibility of extending

this new algorithm. In future, we would like to incorporate
label propagation in our classification approach for better
classification model as well as train not only one but multiple
classifiers in an ensemble model. We would also like to
extend our algorithm to classify streaming text data.
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